
Copyright© 2008 KRvW Associates, LLC

Security Testing

SecAppDev 2008

Copyright© 2008 KRvW Associates, LLC

Confessions of a pen tester

Typical scenario looks like this

– Customer calls and asks for a test

– 2-3 weeks prior to product going “live”

– Security test required by auditors

– Want to ensure “hackers can‟t get in”

– How secure are we?

What problems do you see here?

Copyright© 2008 KRvW Associates, LLC

The problem

Too many organizations have either:

– Neglected security testing entirely

– Assumed (incorrectly) their QA testing will
catch security issues

– Adopted a late-cycle penetration test process
as their sole security test

When you ask the wrong questions, you
won’t get the answers you need!

Copyright© 2008 KRvW Associates, LLC

Security testing is different

Security focus should primarily be on non-
functional aspects of the software

– Not just focused on what the software can or
should do

– Active deception of software intent

– Need to test every aspect of app

QA team often has a tough time “thinking
like an attacker”

Copyright© 2008 KRvW Associates, LLC

Uninformed “black box” testing

Advantages

– Unencumbered by prejudices of how things “should”
behave

– Accurately emulates what an outsider might find

– Can be inexpensive and quick

Disadvantages

– Coverage is abysmal (10-20% LOC not abnormal)

– No notion of risk prioritization

Copyright© 2008 KRvW Associates, LLC

Informed testing

Advantages

– Effort can be allocated by risk priority

– Can ensure high coverage through careful test

design

– Emulate an insider attack

Disadvantages

– Functional “blinders” might miss things

Copyright© 2008 KRvW Associates, LLC

Case study: format strings

Your src includes: if (mystate==FOO) {
printf(userstr);}

You are the engineering team leader of an
embedded sw open source project

The chaos computer club just posted a
paper detailing a newly discovered
format string vulnerability „sploit

Your boss sends you a memo and asks, “are
we ok?”

Copyright© 2008 KRvW Associates, LLC

Testing methods

Common practices include

– Fuzzing

– Penetration testing

– Dynamic validation

– Risk-based testing

Copyright© 2008 KRvW Associates, LLC

Fuzzing

Basic principle

– Hit software with
random/garbage

– Look for unanticipated
failure states

– Observe and record

Any good?

– MS estimates 20-25% of
bugs found this way

– Watch for adequate
coverage

Copyright© 2008 KRvW Associates, LLC

Fuzzing techniques

Smart fuzzing and dumb fuzzing

– “Dumb” refers to using random, unchosen

data

– “Smart” implies using chosen garbage

– Example - fuzzing a graphic renderer

 Dumb approach is to throw it randomness

 Smart approach is to study its expected file formats

and to construct garbage that “looks” like what it

expects, but isn‟t quite right

Copyright© 2008 KRvW Associates, LLC

What to fuzz

Fuzz targets

– File fuzzing

– Network fuzzing

– Other I/O interfaces

Constructing “dumb” scenarios for each is
easy, so let’s look at some smart

approaches

Copyright© 2008 KRvW Associates, LLC

File fuzzing

Smart scenarios

– Really study the expected file format(s)

– Look for things like parameters in data

– Construct nonsensical input data parameters

 Negative or huge bitrate values for audio/video

 Graphic dimensions

Copyright© 2008 KRvW Associates, LLC

Network fuzzing

Smart scenarios

– Really study the software-level network interfaces

 Coverage here must include state

– Look for things like flags, ignoring state

– Construct nonsensical input data parameters

 “Insane” packet sizes

 Data overflows and underflows

Copyright© 2008 KRvW Associates, LLC

Interface fuzzing

Smart scenarios for all other “surfaces”

– Really study the data interfaces

 APIs, registry, environment, user inputs, etc.

– Construct nonsensical input data parameters

 Overflows and underflows

 Device names when file names are expected

Copyright© 2008 KRvW Associates, LLC

Automation is your friend

…and your enemy

– Lots of fuzz
products are
appearing

– How can one size
possibly fit all?

– Best fuzzing
tools are in fact
frameworks

Examples

–OWASP‟s JBroFuzz,
PEACH, SPI Fuzzer

Copyright© 2008 KRvW Associates, LLC

Finding value in pen testing

Enough with what‟s wrong

– Consider informed testing

– Quick form of attack resistance analysis

– Risk-based prioritization

– Nightmare scenarios from architectural risk analysis

– Abuse case stories

– Start with vendor tools, but then roll your sleeves up

and do it yourself

 Scripting tools can help tremendously

Copyright© 2008 KRvW Associates, LLC

Pen testing strategies

Inside out approach
is most likely to yield
meaningful results

– It doesn‟t hurt to also
do an outside in
test

– One very small part of
overall testing

– Adversarial approach

– Surprises happen

Copyright© 2008 KRvW Associates, LLC

Basic pen testing methods

 Target scan

– Take inventory of target space

 Vulnerability scan

– What potential preliminary weaknesses are present?

 Vulnerability exploit

– Attempt entry

 Host-based discovery

– What interesting “stuff” is on each breached system?

 Recursive branching

– Repeat until finished

Copyright© 2008 KRvW Associates, LLC

Pen test results

Results need to be actions for dev team

– Traditional pen test teams report to IT

– Need to adapt to different audience

– Map findings to modules and code

Copyright© 2008 KRvW Associates, LLC

Automation is really your friend

Pen test tool market is (arguably) one of the
strongest in the security business

– Choices abound in commercial and open
source

– Many are quite mature

– Almost a commodity market

Examples include

– Nmap, nessus, Metasploit, ISS, Core Impact,
Retina

Copyright© 2008 KRvW Associates, LLC

Dynamic validation

Time to verify all those security
requirements and functional specs

– QA will have easiest time building test cases

with these

– Fault injection often used

– Helps if requirements verbiage is actionable

Copyright© 2008 KRvW Associates, LLC

Automation, what’s that?

Dearth of available tools

– Some process monitors are available and

helpful

– Test cases are easiest to define

Copyright© 2008 KRvW Associates, LLC

Risk-based testing

Time to animate those “nightmare scenarios” you
uncovered in the architectural risk analysis

– Start with abuse cases, weakness scenarios

– Describe and script them

– Try them one step at a time

Begin at the beginning and go on till you come to
the end; then stop. Lewis Carroll

Copyright© 2008 KRvW Associates, LLC

Automation, what’s that?

Dearth of available tools

– It‟s rare that these scenarios lend themselves

to general purpose automation

– Test cases are really tough to define

Copyright© 2008 KRvW Associates, LLC

Additional considerations

There‟s plenty other things to think about

– Threat modeling

– Results tracking

– Five stages of grief

– Knowledge sharing

– Improvement and optimization

Copyright© 2008 KRvW Associates, LLC

Threat analysis can help

 Who would attack us?

 What are their goals?

 What resources do they have?

 How will they apply technology?

 How much time do they have?

Answers can help in understanding
feasibility of attacks

Copyright© 2008 KRvW Associates, LLC

Results tracking

Lots of good reasons
to track results

– Use again during

regression testing

– Ensure closure

– Knowledge transfer

of lessons learned

– Justify time spent
Tools can help

– Test Director

Copyright© 2008 KRvW Associates, LLC

Five stages of grief

Security testers are often the bearers of bad
news

– Learn from the Kübler-Ross model

 Denial, anger, bargaining, depression, acceptance

 Watch out for denial and anger!

– Understand and anticipate

– Diplomacy and tact will optimize likelihood

of acceptance

Copyright© 2008 KRvW Associates, LLC

Knowledge sharing

Show the dev team how their
code broke

– Best way to learn

– Public humiliation is a

powerful motivator

If a picture tells a thousand
words, a live demonstration
shows a thousand pictures

Copyright© 2008 KRvW Associates, LLC

Improvement and optimization

Immediate goal is to find defects in today‟s
software, but preventing future defects is
also a worthy goal

– Formalize lessons learned process

– Consider papers, blog entries, etc., to share

new findings (once fixed) with others

– Learn from medical community model

Copyright© 2008 KRvW Associates, LLC

Getting started

Some general tips and guidelines

– Interface inventory

– Let risk be your navigator

– Get the right tools for the job

– Scripting skills can be very valuable

Copyright© 2008 KRvW Associates, LLC

Interface inventory

Start by enumerating every interface, API,
input, output, etc.

– This should be done per module as well as per
application

– List everything

– Some call this the “attack surface”

– This list should become a target list as you
plan your tests

– Flow/architecture charts are useful

Copyright© 2008 KRvW Associates, LLC

Risk navigation

The target list is probably too big to do a
thorough job

– Prioritize focus in descending risk order

– Follow the most sensitive data first

– Those flow charts will set you free

Understand now why rigorous testing should
be “white box”?

Copyright© 2008 KRvW Associates, LLC

Test scenario sources 1

Develop test scenarios throughout SDLC

– Start at requirements, such as

 US regs: GLBA, SOX, HIPPA

 ISO 17799 / BS 7799

 PCI

 OWASP‟s WASS

– Warning, they‟re often fuzzy (no pun…)

 SOX says, “Various internal controls must be in

place to curtail fraud and abuse.”

Copyright© 2008 KRvW Associates, LLC

Test scenario sources 2

Also look elsewhere in SDLC for test cases

– Abuse cases

 Many cases translate directly to test cases

– Architectural risk analysis

 Seek the doomsday scenarios

– Code

 Compliance with coding standards

Copyright© 2008 KRvW Associates, LLC

Deployment testing

Rigorous testing of environment

– Network services

– File access controls

– Secure build configurations

– Event logging

– Patch management

– Test for all of this

 Not your job? Who is doing it? The pen testers?

Copyright© 2008 KRvW Associates, LLC

References

Some useful additional reading

 “Adapting Penetration Testing for Software
Development Purposes”, Ken van Wyk,
http://BuildSecurityIn.us-cert.gov

 “The Security Development Lifecycle”, Michael
Howard and Steve Lipner

 Fuzz testing tools and techniques
http://www.hacksafe.com.au/blog/2006/08/
21/fuzz-testing-tools-and-techniques/

http://BuildSecurityIn.us-cert.gov
http://BuildSecurityIn.us-cert.gov
http://BuildSecurityIn.us-cert.gov
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/
http://www.hacksafe.com.au/blog/2006/08/21/fuzz-testing-tools-and-techniques/

Copyright© 2008 KRvW Associates, LLC

Kenneth R. van Wyk

KRvW Associates, LLC

Ken@KRvW.com

http://www.KRvW.com

mailto:Ken@KRvW.com
http://www.KRvW.com

